ASGARD: A Policy Modeling System for Large-Scale Network
Attacks

CyberGreen Institute
August 15, 2018

1 Introduction

This document is an introduction and overview to the ASGARD policy modeling system. ASGARD enables
analysts, researchers and network defenders to evaluate the impact of policy decisions on an attacker’s ability
to successfully execute an attack. In this context, we define policy as decisions that affect the behavior of
large segments of the Internet, such as ASN’s, ISP’s or countries.

ASGARD is designed to explore the impact of policy decisions and inform the development of effective
network defenses at the start point, that is, where the bots used for DDoS, spam and other attacks reside.
Historically, security research has focused on defenses at the end point, that is the target of an attack. For
many attacks, such as DDoS, end point defenses have limited impact because attackers have an overwhelming
supply of resources. Conversely, work on developing start point defenses are often technically simpler to
implement, but require convincing a skeptical audience that they will be effective.

We, the ASGARD designers, believe that this resistance is due to a lack of understanding of the impact
of policy decisions. Network providers makes security decisions rationally, and given the constant slate of
current threats, there is minimal benefit in taking the burden of enforcing a globally responsible policy that
provides them no local benefit. The net result of this is well-understood; reflection attacks have been a
threat for over a decade, despite the fact that the reconfiguration required to reduce this threat is minimal.
ASGARD provides the capacity to model the impact of global policy decisions, such as host reconfiguration,
inventory management and egress control.

ASGARD evaluates impact via game-based Monte Carlo simulations conducted at two levels. The first
(low-level) simulation represents a DDoS attack conducted by a botnet. The low level simulation uses a
game-based model to evaluate attacker success or failure: the attacker succeeds when they overwhelm the
defender’s capacity to absorb the traffic which the attacker sends. The second (high-level) simulation runs
multiple low-level simulations using randomly selected botnets; in this way, the high level simulation can
evaluate the potential impact of policy decisions. Low-level simulations provide technical fidelity by modeling
attacks using realistic numbers; high level simulations evaluate the impact of policy responses.

By splitting the system between low-level and high-level simulations, ASGARD analysts can run simu-
lations of arbitrary complexity. In particular, ASGARD can simulate multistage attacks such as reflection,
as well as adaptive defenses such as scrubbing and stateful policies like rate limiting. Future simulations will
include dynamic reconfiguration and richer network models representing current Internet topology.

The remainder of this manual is structured as follows. §2 provides a technical overview and a mechan-
ical description of the ASGARD system. On completion of this section, the reader will understand how
ASGARD works and the basic concepts behind the simulator. §3 discusses the construction and evaluation
of experiments. §A provides the manual page and operation description. §B provides descriptions of the
objects in the system.

1.1 History and Versioning

Table 1 contains a revision history for ASGARD ; this table is updated every time a minor revision is posted.
ASGARD releases follow a major.minor.fix format, where the major revision refers to significant updates in
the system’s functionality or usage, minor revisions reflect new features, and fixes refer to patches or updates
in response to identified bugs.

Questions about revisions or updates should be sent to Michael Collins, mpcollins@cybergreen.net.

Version Release Date Description
1.0.0 August 15, 2018 | Initial release

Table 1: Version History Table

2 Overview and Definitions

This section is an overview of the ASGARD architecture and core technologies. ASGARD is a discrete
event simulator that uses Monte Carlo technique to evaluate the impact of security policy decisions on
Internet-wide attacks. To do so, ASGARD combines two levels of simulation: low-level and high-level.
Low-level simulations model a single attack in depth, while high-level simulations combine multiple low-level
simulations to generate a distribution of results. This section is divided as follows, §2.1 describes the basic
operation of ASGARD , §2.2 provides definitions for working vocabulary §2.3 provides a walk-through of the
architecture, and §2.4 describes the token exhaustion model used for evaluation.

2.1 Basic ASGARD operation

ASGARD is designed to explore the impact of policy decisions and inform the development of effective
network defenses at the start point. Start point, in the context of this document, means the point of origin
for an attack — the individual bots which make up a DDoS. This contrasts with endpoint defenses such as
scrubbing, rate limiting or blocking in that the start point defenses are distributed across multiple locations.
ASGARD analyses involves developing models of these policies, then applying them to botnets which are
created through network telemetry and evaluating the impact of the policy decision.

Figure 1 is a high-level diagram of standard ASGARD usage. As this figure shows, ASGARD is executed
in a series of discrete steps. First, the analyst must partition the Internet into a set of policy domains; a
policy domain is a collection of IP addresses assumed to be under the control of one organization — the default
policy domain is an autonomous system, but ASGARD can use any arbitrary collection of addresses as a
policy domain. Second, the analyst creates different universes — each universe is an identically partitioned
Internet with different policies applied to it. In Figure 1, the Internet is broken into four policy domains, and
the analyst has chosen to evaluate different policies applied on domains 2 and 3. The third step is the Monte
Carlo analysis — ASGARD executes multiple simulations using randomly selected botnets and evaluates
their impact. The final step provides high-level results; a sequence of histograms show the expected damage
within each policy regime and enable the analyst to estimate the impact. ASGARD evaluation determines
the impact that policy has on an attacker’s ability to effectively damage a target; this evaluation can be used
to complement other data to make a final policy decision.

2.2 Terminology

This section defines the terminology used by ASGARD.

Attacker The entity controlling the attacks and wins when the target is exhausted.

Bot A single computer controlled by an attacker.

Break internet into policy domains

Apply different policies

Run multiple low-level
simulations

@

Decision A

Decision B

T
%4

ASGARD

ASGARD

[~ | [~ [~
el | B e | Eaiand | Eavias

[~ | [~ [~
el | Eaanl | Eaviand | Eav e

MMM/\;\/
| | | | T [

/\/\f/\/\f/\/\f/\;f
i B | Eaiand | Eav e

N\

/

Evaluate high-level results

Il

A B

Figure 1: Standard Usage of the ASGARD System

Bot Pool A set of bots which can potentially be used during an attack. In individual rounds, the attacker
uses a subset of that bot pool.

Configuration The policy regime and bot pool composition decisions made before an individual rumn;

Damage In the context of the ASGARD, damage refers specifically to the resulting economic disruption
caused by the attack, damage is estimated by applying a model to attacker success results.

Defender The entity which wins when the target is not erhausted.
Defense Any system which, after policy limits the number of tokens which can reach the target.

End Point The end point refers to the area of the attack after policy has been applied, comprising the
target and any defenses

High-level Simulation Multiple low-level simulations conducted using randomly selected bot pools under
a specific policy regime.

Layer An abstract representation of where action can take place in a DDoS attack, affecting tokens, policy
and defense. The layer can be link (bandwidth exhaustion), network (packet exhaustion for routers)
or Service (where the target is a service such as a web server or email server).

Low-level Simulation A game-based simulation of a DDoS attack on a single target using a specific bot
pool under a specific policy regime.

Policy A set of behavioral constraints applied to traffic exiting a specific policy domain.

Policy Domain A collection of IP addresses under the control of a single entity; policy domains define the
smallest unit at which a policy is applied.

Policy Regime A specific set of policies applied during a set of high-level or low-level simulations. Analysts
evaluate the impact of different policy regimes to find the most effective ons.

Round The smallest unit of time in a low-level simulation; each round consists of the generation, filtering
and application of a discrete set of tokens to the target.

Run A sequence of rounds using the same bot pool and policy regime. The high-level simulation executes
multiple runs, each consisting of multiple rounds.

Start Point The point(s) of origin of an attack; start points consist of bots which issue traffic to targets.

Target In a low-level simulation, the subject of the attack by the bots, if the target is overwhelmed by
tokens sent by the bots, the attacker wins.

Token The unit of impact for a DDoS attack; attacker bots generate tokens, and the target has a limited
capacity to absorb tokens.

2.3 Architecture and Basic Components

Figure 2 shows the basic ASGARD architecture; as this figure shows, ASGARD is composed of the following
components:

e Telemetry. This component manages the representation and analysis of network telemetry, which
includes botnet populations, the decomposition of networks into autonomous systems and geolocation.
CyberGreen provides telemetry data to partners, and uses several standard formats for these maps.
These formats re discussed in the appendix.

e Attack Models. The attack models are representations of various attacker strategies, including reflection
attacks, HTTP request floods and SYN floods.

e Policy Models. Policy models represent various control mechanisms which are applied at DDoS sources;
examples of policy models include egress filtering, rate limiting and walled gardens.

e Defense Models. Defense models cover the target and defenses around the target.
e Damage Models. Damage models cover the economic damage caused by an attack on the target.

e Simulator. The simulator conducts Monte Carlo simulations to test the impact of different policy
models on attacker capabilities.

e Interface. The interface presents ASGARD results to the outside world.

Analysts configure ASGARD by creating one or more experiment files. An experiment file is a YAML! file
which specifies the parameters for an experiment; Figure 3 shows an example experimental file. The majority
of ASGARD consists of code defining models for attackers, defenders and targets which can be accessed via
YAML. Developers can expand the models provided by working directly with the ASGARD code.

2.4 The Token Exhaustion Model

To evaluate DDoS attacks, ASGARD uses a token exhaustion model. In this model, each attack is composed
of one or more tokens; a token is observable information about the resources that an attacker is using for
the attack. Formally, we define a token as a tuple of the form:

t = (sip_real, sip_obs, layer) (1)

Where sip_real is the actual source IP address of the attacker, sip obs is observed source IP address,
and layer is the layer that the attacker is operating at. At this time the layer value is restricted to the
following layers: link, network or service.

Thttp://yaml.org

Reflector

[Geobe 7]
Telemetry

Reflector | [

External Filtering

Scrubbing |

[Wagner-Dubendorfer |

[HTTP Request Flood |

Rate Limit

Target Capacity ‘

Attack Models

Policy Models

Defense Models

¥

uccess/Exhaustion

Damage Models

[——Success/Hecon]
Simulator

High Level

Interface

Figure 2: ASGARD Architecture

Basic Spoof Attack
#

This is a test scenario that runs through the basic features and
provides sample output.

name: "Basic Spoof"

botnet:
file: sampleset.set
type: random

attacker:
load: 60
type: spoof

defender:
type: scrub
load: 25

target:

type: basic
capacity: 50

Figure 3: An Example Experiment File

During an attacker, an attacker generates a token set T, which comprises all the tokens the attacker
sends to the target. The impact on the target is expressed as follows:

I(€,8,T) = [E(S(T)) (2)

Where § and £ are subsets of the 7 derived by applying start point policy filtering and end point defense.
Start point filtering is modeled as follows: assume a set of policies P = p1 ...p, of the general form:
1 if ¢ passes policy
p(t) = : 3)
0 otherwise
That is, each policy is a function that takes a token and determines whether the policy allows the token to
pass (for example, an egress filtering policy passes tokens where t.sip_real = t.sip_obs). These results are

used to create the set of tokens in S, which equates to those tokens which passed all the policies implemented
by the policy regime:

S(T)={te TI([] »®) = 1)} (4)

peEP

Similarly, end point filtering consists of a ruleset R = ry...r,, which are applied to the tokens at the
end point. As with p, each rule is an individual function which returns 1 or 0 depending on if it passes the
token.

r(t) = 1 if ¢t pas.ses rule (5)
0 otherwise

And

ET) ={teTI(]]r@) =1} (6)
reR
The impact, I is consequently the number of tokens which passed both start point and end point filters.
To evaluate whether an attacker “succeeds” or “fails” in an attack, for a given tokenset 7, we assume the
defender has a load L(d). We then define success as:

1 if I(6,S,T) > L(d)

0 otherwise

S(T,¢,8,L(d) = { (7)
The attacker succeeds if I(7) > L(d) To prevent token exhaustion, a sequence of defensive steps filter traffic
from the attacker to the defender.

3 Experimental Structure and Output

This section covers the construction and interpretation of ASGARD results. It is broken down as follows:
3.1 provides a high level description of the experimental process; 3.2 describes tokens and how to create
them; 3.3 discusses the process of interpreting results.

3.1 Experiment Sequence

To evaluate different policy decisions, analysts create experiment files (as shown in Figure 3), and then
conduct simulated runs, comparing the results of different experiments. Each run is a Monte Carlo simulation
deriving values for Equation 2 using different randomly selected botnets collected from telemetry data.
Figure 4 shows the mechanical process used to implement Equation 2. The sequence shown in Figure 4 takes
place in a discrete package termed a round. Each simulated run consists of a sequence of rounds, which

Attack o Policy | Defensive o
Generator o Model g Model e Target

Attack Magnitude

Magnitude < Target Capacity
|_I Meck Pl

Magnitude > Target Capacity
Attack Succeeds

Figure 4: Filtering Sequence

represent the progression and adaptation of attackers and defenders during the attack. During a round, the
following sequence of operations occurs:

1. The attack generator creates 7 for the round.
2. Policy models are applied to T, producing S(T).

(a) If needed, policy models update their state based on the attack (see walled garden models for an
example)

3. Defenses are applied to S(T), producing £(S(T)).
(a) If needed, defensive models update their state based on the attack.
4. The simulator calculates I, and compares it to L(d) to determine if the attacker succeeded.
5. Damage is updated based on whether the attacker succeeded or failed.
6. The process is repeated until all rounds have completed.

Figure 5 shows an example of the output of a single run. The output shown in Figure 5 is a set of time
series executed in parallel, showing the state of the simulation for different values. The values shown in this
figure are:

Bots This line describes the population of bots engaged in the attack.

Atk. Succ This line shows the attacker success — values in this line will be a 1 if I(7T) > L(d).

Damage This lines shows the damage incurred by the attack as described by the current damage model.
Target This line shows |E(S(T)]

Defense This line shows S(7") and the load on the defenses.

Note the red lines in the Bots, Target and Defense boxes; these lines represent the loads on the represented
systems. The loads represent the maximum value that each system can manage. For bots, this refers to the
maximum number of bots that the bot master has available for the attack. For the target, this refers to the
maximum number of tokens the target can process. For the defense, this refers to the maximum number of
rules that the defense can manage before being overloaded.

Results for Single Simulation Run

v
£ 50 ~
]

.0 T T T T T T
~

Zo0l+ - . : . .
[
2 10 -
£
8 ol . , . ; .
= 50
d WWW\, Rt Ve
[+
[

0 f T T T T T

Q
2 25
k3 /
8 o

0 20 40 60 80 100

Figure 5: Example Output from a Single Run

The load lines show whether an attacker is succeeding or failing, and inform the other two values — damage
and attacker success. An attack succeeds when the tokens received by the defender exceed the defender’s
load line; this can be seen in Figure 5 by comparing the attacker success values to the peaks of the target
line.

Damage is a function of the attacker successes, and is calculated using a distinct damage model. As of
this implementation, ASGARD provides a model based on the Dubendorfer damage model. To evaluate
the impact of distinct policy decisions, ASGARDcompares runs with different policy environments. In this
context, a single experimental run will consist of multiple rounds with shared state. This state includes the
following:

e The composition of the botnet used by the attacker — bots used, and bots available.
e Policy choices and configuration.
e Defensive state; in this iteration, blocking rules implemented by a scrubber.

The output from the high-level simulation is a histogram, an example of which is shown in Figure 6.
Effective defensive policies will result in reduced damage; consequently, the output of Figure 6 for effective
policies will distribute further left than less effective policies.

3.2 What Tokens Mean

A token is an abstract representation of the damage a DDoS attack causes. In order to produce a realistic
simulation, the analyst must understand how to create effective tokens. This sub section discusses the process
of token creation, by explaining are defined and expressed, discussing the tradeoffs in token construction,
and providing historical examples of DDoS attacks.

Tokens are defined through their interaction between two attributes in the attacker (§B.1) and target
(§B.3) objects. As described by Equation 7, an attack succeeds when an attacker generates more tokens then
the defender can process. This leads to two key points: tokens are related to the real world by the target’s
load, and tokens are quantized.

A target’s load represents the capacity a target has for processing something before being overwhelmed.
The something varies on the layer that the DDoS is attacking — for example, at the link layer the load is

Histogram of Damage Ranges for 2 Scenarios

Spoofing -- blocking 1 quad

120 1 Spoofing -- blocking 2 quad

100 A

@
o
1

Frequency
(=]
o

40 4

204

0 __M—-J_'—l_-ﬁ%%_
0 200 400 600 800 1000
Economic Damage (W/D Model)

Figure 6: Example Output from Multiple runs, Showing the Impact of Different Policy Decisions

Token Size | Bot Token Range | Load | Notes

1 bit 10e5-10e7 10e9 | Setting a token size this small will require processing billions of
tokens a round, resulting in a very slow simulation.
1 Mibit .1-100 10e3 | Setting token size to a Mibibit (1 million bits? requires only a

thousand tokens to model exhaustion, but results in unrealistically
high traffic coming from individual hosts.

100 Kibits 1-1000 10e4 | Setting this size results in potentially realistic attack sizes, and is
computationally reasonable.

Table 2: How Token size and loads Interact

usually bandwidth and expressed in terms such as Gbps (Gigabits per second), the network layer will express
load in terms of pps (packets per second), and a service layer will represent it in terms of requests per second.
For example, consider an HTTP exhaustion attack — the target of such an attack will be able to process
between 100 and 1000 requests per second, in which case it’s reasonable to set a token to a single request,
and the load of the target between 100 and 1000 tokens.

Token quantization means that the smallest unit used in an attack is a token, this is more critical as we
consider higher-volume targets. For example, consider an attack on a Gigabit Ethernet connection. This
connection can take 10e9 bits of traffic before being exhausted. Table 2 shows some example token sizes
and loads that could be used in this case.

The supplemental spreadsheet incident_database.x1lsx provides historical examples of incidents and
potential token and load values.

3.3 Results: Understanding Success

ASGARD defines success in two ways — the low-level simulator, defines success using Equation 7. This
definition of success is binary and zero-sum — either the attacker has succeeded, or the defender has succeeded,
and there is no intermediary state. The high level simulator uses damage models to evaluate success; a damage
model calculates damage over a sequence of Equation 7 outputs, one for each round of the simulation.

In the current implementation, the damage model is derived from Dubendorfer et al.’s work on estimating

the impact of DDoS attacks, and refers to economic damage®. The Dubendorfer model identifies four classes
of economic damage, these are:

Downtime Loss Downtime loss refers to immediate costs due to the targeted site being out of operation;
this includes revenue loss from the site being unable to service customers, as well as losses due to
employees being unable to fulfill their jobs. Downtime loss is modeled as a linear function of time
down — each round that the attacker succeeds adds further downtime loss.

Disaster Recovery Disaster recovery loss refers to the time and effort required to bring the system online
after an attack. Disaster recovery is modeled using a threshold — if the attacker is able to keep the
target down for longer than a some number of rounds, disaster recovery is incurred.

Liability Liability refers to costs incurred due to inability to fulfill site obligations. Liability is incurred if
the attacker wins for some minimum number of rounds.

Customer Loss Customer loss refers to costs incurred due to loss of reputation and long-term customer
attrition. Customer loss is incurred if the attacker wins for some minimum number of rounds.

The damage line in Figure 5 shows the estimated damage from an attack. When comparing different
policy choices, the damage is modeled as shown in Figure 6. The histograms shown in Figure 6 show the
distribution of different damage results for different policy regimes. A policy regime is more effective if, given
all other things being equal, the aggregate damage caused by the attack is lower.

When using ASGARD for policy analysis, analysts must be aware of the key assumptions made behind
the system. These assumptions derive from a basic operating principle: that DDoS attacks are not subtle.
From that, we assume that variations in detection or topology are not germane, and make assumptions that
benefit the defender.

In particular, ASGARD assumes the attacker is going to overwhelm the target sufficiently that nor-
mal user traffic does not contribute to the simulation. For this reason, the current implementation of
ASGARD does not include a user traffic generator; this is implicitly handled via loads. In addition, the
current implementation ASGARD does not address the impact of network topology on traffic, since the
policy decisions that ASGARD simulates would effectively reduce the amount of attack traffic coming from
individual networks.

We note in passing that these assumptions affect the current implementation of ASGARD ; future versions
will include more complex simulations.

4 Conclusions

This document has introduced ASGARD, a system for evaluating the impact of policy decisions on distributed
attacks. Using ASGARD, a policy analyst can build models for different defensive policies and determine
how they will affect an attacker’s ability to damage targets.

The strength of the two-level simulator approach is that it enables analysts to expand the simulator
to accomodate different forms of attacks and defenses. The next generation of ASGARD will develop
higher-fidelity low-level simulations by combining traffic telemetry and adaptive defenses.

A Manpages

The manpage shown in Figure 7 is taken directly from the command line. ASGARD is invoked by running
the asgard.py script from Python. ASGARD uses Python 3 language features; running the tool with
Python 2 will result in syntax errors and early termination.

3Dubendorfer, T. et al., An Economic Damage Model for Large-Scale Internet Attacks, in 2004 IEEE Workshops on Enabling
Technologies

10

usage: asgard.py [-h] [--onerun] [--compare] [--round-count ROUND_COUNT]
[--run-count RUN_COUNT] [--output OUTPUT_FORMAT]
scenario [scenario ...]

Process Simulations

positional arguments:
scenario Scenario file

optional arguments:

-h, --help show this help message and exit
--low-level Run low level simulation
--high-level Run high level simulation

--round-count ROUND_COUNT
Number of rounds per run
--run-count RUN_COUNT
Number of individual runs per experiment
--output OUTPUT_FORMAT
Preferred output format, can be: ui, or csv
usage: asgard.py [-h] [--low-level] [--high-level] [--round-count ROUND_COUNT]
[--run-count RUN_COUNT] [--output OUTPUT_FORMAT]
[--beep BEEP]
scenario [scenario ...]

Process Simulations

positional arguments:
scenario Scenario file

optional arguments:

-h, --help show this help message and exit
--low-level Low level simulation
--high-level Compare scenarios

--round-count ROUND_COUNT
Number of rounds per run
--run-count RUN_COUNT
Number of individual runs per experiment
--output OUTPUT_FORMAT
Preferred output format, can be: json, csv, text or ui
--beep BEEP Outputs a period to stderr every specified number of
rounds to indicate operation

Figure 7: ASGARD Manpage, Taken from Command Line

11

The basic invocation of ASGARD is of the form asgard.py -low-level scenario.yml; this will run a
low level simulation as configured by the scenario.yml file (the distribution includes multiple scenario files
for testing and training purposes) and display the result to the UIL. The operator can, alternatively, run a
high level simulation by specifying -high-level instead, this will generate histograms.

The asgard.py tool has no upper limit on the number of scenarios specified. In the case of low level
simulations, this will result in progressive displays on screen — that is, a low-level simulation will be run for
the first file, the results shown, then when that window is closed, the next scenario will run. In the case of
a high-level simulation, this specifies the number of histograms plotted on the output.

The number of simulations processed is specified by the round-count and run-count arguments. round-count
specifies the number of rounds in a run and defaults to 20 rounds. run-count specifies the number of runs
for a high-level simulation and defaults to 20 runs. Note that the run-count argument is only relevant for
high-level simulations.

The -output argument enables different output formats. ui, the default, produces the plots seen in this
document. The csv option will instead dump comma-separated value format data to screen, which can then
be processed via Excel, R or any other data analysis tool.

B Object Model

The basic ASGARD object hierarchy is shown in Figure 8; as this figure shows, ASGARD consists of a
base set of classes: attackers, botnetselectors, targets, policymaps, policies and defenders. Each of these
classes contains one or more implementations, which are accessible by configuring the relevant feature in an
experiment file.

12

SynFlood
Attacker
Attacker
UDPFlood
Attacker
HTTPRequest HTTPSlowLoris
Attacker Attacker

SKBotnet
Selector

BotnetSelector

RandomBotnet
Selector

‘ Target }—» DrainTarget

EgressPolicy

RateLimit

Policy
Policy

WalledGarden
Policy
——| BlockPolicy
PolicyMap

‘ Defender }—>‘ Scrubber ‘

L]

Figure 8: ASGARD Basic Simulation Object Hierarchy

13

B.1 Attacker Objects

type base|spoof|udpflood|reflector| httpflood | Attacker type

load int Maximum botnet size

delta min int Minimum change in botnet size per round

delta max int Maximum change in botnet size per round

init _size int Initial botnet size

tok min int Minimum number of tokens generated per bot per round
tok max int Maximum number of tokens generated per bot per round
spoof bool Whether or not the attack is spoofed

Table 3: Base Configuration Values for Attacker Objects

Table 3 shows the possible attributes for a attacker configuration. Attack objects are specified as one of
the following types:

e base Baseline attacker; sends TCP packets to the target without spoofing.

e udpflood. UDP flood attacker; this sends UDP packets without spoofing.

e spoof. Spoofed TCP flood.

e httpflood. HTTP attacker; this sends instantaneous HTTP request sessions. It cannot be used with
spoofing.

e reflector. Reflector attacker; this sends UDP packets to a reflector set which are then sent to the
target. These attacks are spoofed.

The other arguments specify attributes of the attack. The load value specifies the maximum size of the
botnet that the attacker can use; if the load value is larger than the supplied botnet, then the botnet’s size
will be used. The init_size, delta_min and delta_ mazx values are used to specify the size of the botnet each
round; in the first round, the attacker selects init _size bots, then adds a random value between delta_min
and delta_maz each round until the active size is equal to load. Formally, given a round r, the number of
active bots in r is:

B, = B,_1 + R(delta_min, delta max) (8)
By = init_size (9)

The tok_min and tok_max values determine the range of token values generated by an active token. The
total tokens sent by the host are evaluated as:

T(r)= Z R(tok min,tok max) (10)
i=1...B,

14

1.3.9.11
2.18.3.17
211.14.9.44

Figure 9: A Simple IP list for Botnet Selection

B.2 Selector Objects

type | silk|random|text | Selector type
file string Filename
load int maximum entries

Table 4: Base Configuration Values for Botnet Selector Objects

The Selector object is used to select bots for an attacker. Selectors come in three types:
e silk The file is in SiLK IPSet format.

e random The file is randomly generated.

o text The file is a text file of IPv4 Addresses.

ASGARD currently supports two file formats for botnet selectors: SiLK format and text format (the
random “format” uses randomly generated addresses across IPv4 space). SiLK format, in this context, refers
to the SILK IPset format, a compact binary representation of IPv4 addresses — this format is only usable if
the SiLK tool suite is installed 4. Data in SiLK format must be generated using the SiLK rwsetbuild or
rwset command. Text format consists of IPv4 addresses expressed in standard “dotted quad” format (e.g.,
’151.101.64.144"). Figure 9 shows an example of this format.

The load argument implements an upper limit to the number of unique bots that the selector will provide
in one call. If the load value is greater than the number of hosts available in a file, then the population of
the file will be used. In the case of a 'random’ selector, the load value is effectively meaningless.

4More information on SiLK is available at https://tools.netsa.cert.org/

15

B.3 Target Objects

type basic|drain | Target type
load int Maximum target capacity
timeout int Rate at which tokens are reclaimed

Table 5: Base Configuration Values for Target Objects

Target objects model the target’s ability to receive and process damage. The current implementation
provides two target model types:

e basic Base target type; only processes the tokens received that round.
e drain Drain target type; keeps the tokens received in a round for future rounds.

The load value refers to the number of tokens the target can manage in a round. If the target receives
more than load tokens, then the attacker succeeds; the the target receives less than load, then the attacker
fails.

The default (i.e., basic) type target 'clears out’ tokens each round; that is, the target will assume that
the only tokens mattering are the tokens generated in a round. Drain type targets are used to model attacks
such as slowloris, which maintain longer connections. Drain targets use the timeout argument to specify
how long a token lasts in the load; the argument is an integer for the number of rounds before the token is
cleaned out.

16

An example policy map
Lines beginning with a hashmark are treated as comments and ignored
during loading.
Addresses are specified as CIDR blocks followed by the domain ID
128.2.0.0/24 1
Multiple blocks can belong to the same domain, just specify the
ID again.
38.0.17.0/22 1
Blocks can be any size from /8 to /32
218.9.0.0/15 2
Domains do not have to be assigned sequentially
99.3.4.17/32 1

H H OH

*

Figure 10: An Example Policy Map

B.4 Policy Objects

type basic|egress|block|rate|garden|remediate | Policy type

load int Maximum load size

mapfile string Pointer to map file name

domains int list domains affected by map

chance int probability (out of 1000) that a host was remediated

Table 6: Base Configuration Values for Policies

Policy objects model the impact of network policy on attacker behavior. All policy objects work by
applying their policy across a domain; in the context of ASGARD , a policy domain is a collection of IP
addresses under the control of a single entity (meaning that the entity has the ability to effectively implement
policy within that domain). Policy domains are described using policy maps, which are tables listing a domain
and its constituent IP addresses. An example policy map is shown in Figure 10.

There are five basic policy types, these are:

e base The base policy type does nothing. That is:
Dhase(t) =1 (11)

e egress The egress policy type blocks spoofed outgoing traffic. That is:

1 if t.sip_real = t.sip obs
DPegress (t) = N - (12)
0 otherwise

e rate The rate limit policy limits the maximum number of tokens that can exit a network.
e garden The walled garden policy stops a bot generating tokens after its initial attack.
e block The block policy stops a bot from communicating.

e remediate The remediate policy expresses a probability (using the optional argument chance that a
host has been patched.

17

The load argument is currently only used with the rate limit policy and specifies the maximum number
of tokens a domain can issue. The chance argument is only used with the remediate policy and expresses
a probability out of 1000 (e.g., setting chance to 500 equates to a one out of two chance) that a host is
remediated. Remediated hosts will not generate attack traffic.

18

B.5 Defender Objects

base|scrub | Defender type
int Maximum load size

type
load

Table 7: Base Configuration Values for Defender Objects
Defender objects specify endpoint defense capabilities. In the current implementation, there are two
types:
e base The base defense does nothing.
e scrub A scrub defense blocks IP addresses.

The scrub defender keeps a blacklist of IP addresses; when the defender receives a token, it compares that
token’s source address ® with the blacklist. If the address is on the blacklist, the attack is dropped. If the
address is not on the blacklist, it is added to the blacklist. The defender can manage up to load addresses;
after exhausting its blacklist it lets tokens through.

5note that this is the published source address and, if the attacker spoofs, will be spoofed

19

