

 CyberGreen
Data Platform v2
Technical Architecture - Overview

L. Aaron Kaplan (CyberGreen, Cert.AT)

&
Dr. Rufus Pollock (Atomatic Ltd)

Version: 1.1

Cybergreen Technical Architecture v2 - Overview - v1.1

Table of Contents

Introduction
Scope
Lessons learned from CyberGreen v1
Overview of the data platform
Key user story epics

Access to data
Access via an API
Normalized data
Bulk Data

Import data into the platform
Automatic Enrichment and Validation
Automation

SysAdmin and Platform Analytics
Architecture

Overview of Platform Components and Relationship
Overview of Data ETL (Extract, Transform, Load)
API Specification
Interfacing externally aggregated CSVs

Appendix
Appendix A: References
Appendix B: Glossary
Appendix C: Coding Standards
Appendix D: Existing Tools for data collection
Appendix E: CyberGreen v1

1

Cybergreen Technical Architecture v2 - Overview - v1.1

Introduction
Cybergreen wants to improve cyber health through research, metrics and outreach.
Our modern economy is highly dependent on the Internet, which itself is dependent on
information and network security. Threats to the Internet’s security and stability can have
effects on the global economy.

Only via repeatable measurements can we identify risks to global cyber health and
address these. Measurement data must be made available to remediation teams, policy
makers, CERTs and Cybergreen’s users so that they can take collective action on it.

The platform will serve as a data hub for these kinds of aggregated internet health
measurements, allowing researchers, policy makers and CERTs to inspect the data as well
as giving them bulk access to the data stored in the platform . 1

The “platform” as described consists of two major parts:

● “Data platform”: the system for importing, cleaning, storing and making data
available in bulk and via API to users and frontend applications

● “Stats frontend”: this is a website which presents the Cyber Health Index and other
main statistics in a way that is easy to access and use, pulling data from the data
platform.

The following diagram illustrates the relationship of these different components both to
each other and to third party resources and users.

1 We will distinguish between aggregated data and raw data at a later stage in this document.

2

Cybergreen Technical Architecture v2 - Overview - v1.1

Overview of this document:

1. First we will discuss Cybergreen platform version 1 and lessons learned from it.
2. Next in “Overview of the data platform”, we will describe version 2 of cybergreen,

as far as the data platform (the core) is concerned.
3. We list key user story epics which outline the main requirements placed on the

platform by different types of users.
4. After we clarified users’ expectations, we can discuss the actual architecture in the

next chapter.
5. Appendix: listing existing tools, a glossary and coding standards.

Scope
This technical architecture document focuses almost entirely on the “data platform”.
Thus, for the rest of this document when we say “platform” we mean the “data platform”
as set out above.

This data platform is a combination of a datastore (or datastores), collection mechanisms,
connectors to existing collection mechanisms (such as CIF, IntelMQ, etc), filtering, data
enrichment and aggregation and access methods including bulk download and web APIs.
That platform does not include the visual frontend(s), visualizations or other websites
such as:

● stats.cybergreen.net
● www.cybergreen.net (the landing site, blog etc)
● Any embeddable visualisations

3

http://www.cybergreen.net/

Cybergreen Technical Architecture v2 - Overview - v1.1

This choice of focus is intentional. The data platform is where “architecture” is actually
needed – the frontend site itself will not require large-scale technical architecture. The
data platform is also the core of system and presents the primary technical challenges in
implementation. Finally, the frontend site will be driven off the data platform so it forms a
natural first point of focus.

Finally, this document does not focus on the Cybergreen metrics (“Cybergreen Index”).

Lessons learned from CyberGreen v1
Details on CyberGreen v1 can be found in the Appendix. This section focuses on the
lessons learned and what they imply for CyberGreen v2.

● The Cybergreen Index version 1 was confusing: people intuitively tried to rank their
respective countries or ASNs against each other, while the index did not lend itself
to this type of comparison. This led to some users dismissing the whole project.

○ => This is being addressed with the creation of a new index definition later this
year (separate from this technical architecture - though important context)

● Data collection was sketchy at best. Countries with little data were showing as
doing well in the index.

○ => Good data collection and processing, as well as good choices about
missing data are key to providing robust, actionable intelligence.

● The API was well hidden and it was hard to get out data from version 1.
○ => Providing high quality bulk and API access is important and should be an

up-front design goal. Having a solid API will allow for multiple frontends.
Downloading bulk data must be easy.

● Cybergreen had challenges to obtain raw bulk data from “super-remediators” (raw
data collectors). This was both for privacy reasons and because of potential
conflict of interest esp with commercial providers who were collecting
measurements of internet health and re-distributing them themselves to a global
audience.

○ => Allow super-remediators to provide pre-aggregated data. Substantial
work to build trust and collaborations.

○ => Be flexible for connecting to multiple collection platforms such as CIF,
IntelMQ, Abusehelper, or any other externally generated aggregated CSV files

● Users want to access data via ISP or ASN as well as at the country level. This is
especially important for actionable intelligence for CERTs.

○ => Make sure we include ASN and other key “axes” of analysis in the data we
collect and aggregate. Version 2 should provide per ASN/per Risk data as well
as per country data.

4

Cybergreen Technical Architecture v2 - Overview - v1.1

● Cybergreen version 1 was not telling any stories to policy makers
○ => Design the front-end with policy-makers in mind and make sure the data

platform supports the kinds of stories you want to tell.
● The platform version 1 was bulky, cumbersome and created a lock-in effect on a

small company who were the only ones being able to operate, modify and adapt
the platform. There was a lack of standardised tooling and shared best practices
which hampered scalability and sustainability.

○ => Design a platform that uses more standardized components, that draws on
lessons from the data platforms and open data communities

○ => Be flexible for connecting to multiple collection platforms such as CIF,
IntelMQ, Abusehelper, or any other externally generated aggregated CSV files

○ => De-coupling! While version 1 was a monolithic system, version 2 shall be
loosely de-coupled and allow for integrating with multiple inputs as well as
outputs.

● Cybergreen v1 was a monolithic architecture, all centralised in one system.
○ Cybergreen v2 aims at a distributed, even federated architecture which

allows multiple parties to benefit from exchanging (raw or aggregated) data
in order to cooperatively address cyber health issues.

Raw versus Aggregated data
Cybergreen v2 shall only aim at serving raw OSINT data where appropriate. All other data 2

will be aggregated and only served in aggregated form to the public.
Aggregated data has the added benefit of being smaller as well as not touched by privacy
issues.
Cybergreen will happily accept pre-aggregated data as long as the data source is
trustworthy and provides accurate measurements. A format for pre-aggregated data can
be found in the section “Interfacing externally aggregated CSVs”.

Cybergreen v2 will try to avoid conflicts with super remediators, who’s business it is to
send out raw data.

Overview of the data platform
The data platform will:

● Aggregate and enrich diverse sources of external raw and aggregated data on
cyber health

● Make that material available in a consistent form in bulk and via an API
● Do this in an efficient, fast and scalable manner

2 Open Source Intelligence - meaning the data was already public in the first place, but might have been
distributed and in different formats.

5

Cybergreen Technical Architecture v2 - Overview - v1.1

Bulk access. Bulk access is important for two reasons. First, credibility and trust – bulk
access allows users to see the data behind the graphs. Second, maximizing value from the
data via the “many minds principle” – bulk access provides power users such as
technically minded cybersecurity professionals full access to the data in order to perform
their own deep dives. This enlarges the potential for insights and also reduces technical
demands that the platform support a myriad of possible analytical tools.

API access will be important for powering presentational applications such as the
CyberGreen “Cyber Health Index” and data explorer (“stats.cybergreen.net”), data
visualizations and other analytical and exploratory tools.

Key user story epics
Note: these user stories focus on the technical data platform, not the stats frontend or
other “end-user” analysis or use (e.g. we do not have user stories like “X wants to see
which country is performing best on cyber health” as that is a story for frontend).

Note: these are high level “epics” rather than classic lower-level user stories.

Note: for the sake of user story-telling, most user stories are written in the first form “As
Alice, I want to …”

Personas:

● Alice, a data wrangler loading data into the platform

6

http://rufuspollock.org/many-minds/

Cybergreen Technical Architecture v2 - Overview - v1.1

● Bob, the administrator of the platform
● Charlie, a technical “client” (user) of the data platform e.g. front-end developer of

the stats platform, a data scientist

Access to data

Access via an API
As Charlie I want an API for the data that allows me to pull aggregates of the data filtered
by the main axes of interest (place, time, ISP) so that i can present these aggregates to
users

● Main axes:
○ Time (year, month, day)
○ Place (country, region)
○ Network / network owner: ASN/ISP

● Average response time for queries should be below 500ms
● Access should not require an API key but we are considering this in future so it should

be a consideration for implementers

As Charlie I want good documentation for the API so that I can use it without consulting an
expert or its author (or spend long time trying to figure it out by hand).

Normalized data
As Charlie I want to access non-normalized as well as normalized data (e.g. infection
counts divided by network size) so that I can present more easily compared data to my
users.

Bulk Data
As Charlie I want to download major slices of the data (or even all data) easily so that I can
perform my own analyses with my own tools.

Import data into the platform
[Scalability] As Alice I want to ingest large amounts (TBs) of raw CSV data easily and
efficiently into the platform so that the data is stored in the platform and available from it

● Focus is on source data in CSV format. There may need to be support for some other
formats – details provided at a later stage.

● Will want to “filter” data on ingest … example: NTP data has false positives. We need
to be able to filter these out.

[Scalability] As Alice I want to be able to add new data sources and configure their
ingestion quickly and easily so that new data sources can be added efficiently

7

Cybergreen Technical Architecture v2 - Overview - v1.1

As Alice, I want have a very robust (in the sense of failure tolerant) parsing mechanism for
data feeds, so that I don’t always have to adjust my parsers to (possibly slightly) changing
data feeds. Alice recognizes that major changes in format of the data feed will require of
course new parsers. But the parsers shall be tolerant enough to allow for slight mistakes
in the format.

As Alice, I want basic performance metrics for the ETL cycles so that I can estimate the
turn around times and monitor the system’s performance.

As Alice, I want feedback of how many raw data log lines were parseable and how many
were skipped/assigned to the “any” category.

Automatic Enrichment and Validation
As Alice I want to have my raw data automatically enriched, for example have ASN,
country and location information added to a given by geolocating IPs

As Alice I want to have my raw data automatically checked to see if there are any
anomalies or potential errors so that these can be flagged early and corrected

As Alice I want to carry out automatic normalization on my data so that it is “pre-cached”
in the platform (as opposed to being performed on the fly as part of API access)

Automation

As Alice I want to automate the above so that we can collect and process different data
feeds over time automatically without Alice’s constant manual attention so that running
the platform does not depend solely on Alice and can scale

As Alice, I want to be alerted if some data feed can’t be collected or processed, so that I
can take corrective actions in case some data feed does not work anymore.

SysAdmin and Platform Analytics
As Bob I want to see how many queries are happening a day so that I can report that to
platform managers and sponsors.

As Bob I want to know how the platform is performing (e.g. no of queries, query response
time) so that I can identify any performance issues.

As Bob I want to know what the cost of running the platform is month to month so that I
can budget.

8

Cybergreen Technical Architecture v2 - Overview - v1.1

Architecture

Overview of Platform Components and Relationship

9

Cybergreen Technical Architecture v2 - Overview - v1.1

Overview of Data ETL (Extract, Transform, Load)

10

Cybergreen Technical Architecture v2 - Overview - v1.1

API Specification
The Read API should follow RESTful principles. Rough outline as follows:

/place/{place-id}/
/risk/{risk-id}/
/risk/{risk-id}/{place-id}/

/aggregate/?place=x&risk=y

Here, “place” denotes a country or ASN.

Interfacing external raw CSVs
External raw CSVs shall be converted into a standardised internal format for further
processing:

<timestamp>,<ip>,<risk>, (… any other field…)

Ideally, external raw data already comes in this format. If not, it shall be converted.

Interfacing externally aggregated CSVs
The platform can accept pre-aggregated CSVs. In order to be able to import these into the
system, externally aggregated CSVs must adhere to the following format:

risk year place count

openntp 2014 JP 330292

opensnmp 2015 BR 163306

opendns 2015 US 99630

opensnmp 2015 US 78197

opendns 2015 CN 78102

opensnmp 2015 KR 74141

Overview table

● The risk must be a unique ASCII string and there needs to be a (markdown)
description of its meaning and implication.

● Place is the standard ISO 2 letter country code. See
http://data.okfn.org/data/core/country-list/

● Count is the absolute number of occurrences of this risk

11

http://data.okfn.org/data/core/country-list/

Cybergreen Technical Architecture v2 - Overview - v1.1

12

Cybergreen Technical Architecture v2 - Overview - v1.1

Appendix

Appendix A: References
[1] “The Cybergreen project: metrics and measurements for global cyber hygiene”, L.
Aaron Kaplan 2016, www.cybergreen.net
[2] “Standards and tools for exchange and processing of actionable information”, ENISA,
https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-proces
sing-of-actionable-information
[3] “Shades of Green", Dan Geere, http://geer.tinho.net/geer.cybergreen.ii16.PDF,
www.cybergreen.net

Appendix B: Glossary

Term Explanation

User A user of the platform. We address national CERTs, policy makers
on a national level responsible for cyber security issues as well as
network operators.

Risk By Risk we refer to any of the two: vulnerability or infection.

Infection An infection happened when a computer is under the control of
an unauthorized third party and is running some kind of malicious
software on its’ behalf.

Vulnerability A vulnerability is a property of software. It is is a weakness which
allows an attacker to reduce a system's information assurance.

Raw data By raw data we mean log entries in the form
<timestamp>,<ip>,<risk>, (… any other field…)

Aggregated data Summarised data: counts of infections or vulnerabilities over
time, ASN, country.

Data Store Storage for raw and processed data. Likely a combination of
flat-file and relational and/or NoSQL storage.

Data platform The system for importing, cleaning, storing and making data
available in bulk and via API.

Stats frontend By frontend we mean a web UI or any other interface which
accesses the data platform via API.

API Application Programming Interface

ETL Extract, Transform, Load

13

http://www.cybergreen.net/
https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information
https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information
http://geer.tinho.net/geer.cybergreen.ii16.PDF
http://www.cybergreen.net/
https://en.wikipedia.org/wiki/Hacker_(computer_security)
https://en.wikipedia.org/wiki/Information_assurance
https://en.wikipedia.org/wiki/Extract,_transform,_load

Cybergreen Technical Architecture v2 - Overview - v1.1

ASN Autonomous System Number, a unique number assigned to an
ISP (although an ISP might have multiple ASNs).

ISP Internet Service Provider. Used synonymously with “network
operator in this document”.

Appendix C: Coding Standards
Development of the CyberGreen v2 should adhere to the following “coding standards”:

● Languages: the platform must be built using one or more of the following
languages C, Perl,Python, NodeJS (or Go)

○ C, Perl,Python or Go for ingestion and processing
○ C, Perl,Python or NodeJS (or Go) for web applications

● All code must come with tests with reasonable coverage.
● Code should be version controlled (in git).
● Continuous integration is strongly recommended (e.g. Travis CI).
● Recommend S3 (and AWS generally) for data platform
● Tools should be open source where possible and code developed by this project

will be open source (AGPL or MIT license or similar. Preference on AGPL)
● We encourage reuse of existing tooling (and contribution back to those tools)

Appendix D: Existing Tools for data collection
Abusehelper
Summary: Abusehelper is a tool for collecting, filtering, enriching data feeds of IT security
events. It was one of the first data-flow oriented tools using XMPP as a “message bus”. It
was developed by Clarified Networks with CERT.fi and the Estonian CERT. There are two
versions of Abusehelper: open source and closed (“AbuseSA”). Many CERTs encountered
that setting up the open source version was too time consuming. IntelMQ is the direct
result of frustration with the open source version and (at that time) lacking
documentation.

● URL: https://en.wikipedia.org/wiki/AbuseHelper
● Git: https://github.com/abusesa/abusehelper
● Documentation: https://github.com/abusesa/abusehelper/tree/master/docs
● Data format:

https://github.com/abusesa/abusehelper/blob/master/docs/Harmonization.md

IntelMQ
Summary: IntelMQ (“intelligence message queue”) is a tool developed by multiple
European CERTs for automating the incident handling processing. It collects, filters,
enriches, deduplicates multiple OSINT (open source intelligence) and non-open data

14

https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://en.wikipedia.org/wiki/AbuseHelper
https://github.com/abusesa/abusehelper
https://github.com/abusesa/abusehelper/tree/master/docs
https://github.com/abusesa/abusehelper/blob/master/docs/Harmonization.md

Cybergreen Technical Architecture v2 - Overview - v1.1

feeds on IT security events. It is supported by ENISA and widely used (at the time of this
writing).

● URL: http://github.com/certtools/intelmq
● Documentation: https://github.com/certtools/intelmq/tree/master/docs
● Feeds: https://github.com/certtools/intelmq/blob/master/intelmq/bots/BOTS
● Data format:

https://github.com/certtools/intelmq/blob/master/docs/Data-Harmonization.md
https://github.com/certtools/intelmq/blob/master/docs/Harmonization-fields.md

Note: the data format (called “Data Harmonisation Ontology” - not a particular
meaningful name) between IntelMQ and Abusehelper is very similar (intentionally so).

Note2: IntelMQ can dump all of it’s data into multiple output databases (or flat files) such
as postgresql for further processing.

CSIRT Gadgets CIF (collective intelligence framework)
CIF is a tool which came out of the REN-ISAC community in the US. It was built for and by
academic network operators / IT security groups to monitor, collect and act upon IT
security data feeds (“should I block IP address x.y.z. from attacking my education
university network?”)

● URL : http://csirtgadgets.org/collective-intelligence-framework
● Code: https://github.com/csirtgadgets/cif-v1
● CIFv3: https://github.com/csirtgadgets/bearded-avenger
● Data format: No documentation for the CIF format
● Note: basically CIF is end of life for Cybergreen.

Megatron
Megatron is a tool developed by the swedish CERT to automate incident handling in batch
mode. Data of IT security data feeds is collected in batch, processed and sent out
(“notifications”) to end users, network owners etc. It is written in Java and used by the
Netherlands and Sweden.

● URL: https://github.com/cert-se/megatron-java

The most common mechanism however still is…
Flat files in any type of CSV format, shared via scp via cron jobs or email.

Appendix E: CyberGreen v1
The first version of the Cybergreen project assumed, it would collect all possibly
collectable data on infections or vulnerable systems on the Internet, visualise it and
re-distribute it to countries, CERTs or ISPs.

15

https://www.enisa.europa.eu/topics/csirt-cert-services/community-projects/incident-handling-automation
http://github.com/certtools/intelmq
https://github.com/certtools/intelmq/tree/master/docs
https://github.com/certtools/intelmq/blob/master/intelmq/bots/BOTS
https://github.com/certtools/intelmq/blob/master/docs/Data-Harmonization.md
https://github.com/certtools/intelmq/blob/master/docs/Harmonization-fields.md
http://www.ren-isac.net/
http://csirtgadgets.org/collective-intelligence-framework
https://github.com/csirtgadgets/cif-v1
https://github.com/csirtgadgets/bearded-avenger
https://github.com/cert-se/megatron-java

Cybergreen Technical Architecture v2 - Overview - v1.1

At the beginning of the project, CISRT Gadgets was tasked to create a Cybergreen Portal
page based on their CIF framework. The following figures show a screenshot of platform
version 1 (stats frontend) as well as an initial architecture diagram.

Platform version 1 had very ambitious goals to collect all kinds of OSINT as well as 3

private raw data, store it in Elastic Search DB, producing a “CyberGreen Index”, and finally
redistributing the raw data. The “CyberGreen Index” (version 1) should be a measure of
how well a country is improving. However, it was only employed on countries.

3 Open Source Intelligence

16

http://csirtgadgets.org/
http://csirtgadgets.org/
https://stats.cybergreen.net/
https://stats.cybergreen.net/
http://csirtgadgets.org/collective-intelligence-framework
http://csirtgadgets.org/collective-intelligence-framework

